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R. Fedele1,a, D. Anderson2, and M. Lisak2
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Abstract. A hydrodynamical description of coherent instabilities that take place in the longitudinal dy-
namics of a charged-particle coasting beam in a high-energy accelerating machine is presented. This is done
within the framework of the Madelung fluid picture provided by the Thermal Wave Model. The well known
coherent instability charts in the complex plane of the longitudinal coupling impedance for monochromatic
beams are recovered. The results are also interpreted in terms of the deterministic approach to modulational
instability analysis usually given for monochromatic large amplitude wave propagation governed by the
nonlinear Schrödinger equation. The instability analysis is then extended to a non-monochromatic coasting
beam with a given thermal equilibrium distribution, thought of as a statistical ensemble of monochromatic
incoherent coasting beams (“white” beam). In this hydrodynamical framework, the phenomenon of Lan-
dau damping is predicted without using any kinetic equation governing the phase space evolution of the
system.

PACS. 29.27.Bd Beam dynamics, collective effects and instabilities – 05.45.-a Nonlinear dynamics and
nonlinear dynamical systems – 03.75.-b Matter waves

1 Introduction to the Madelung fluid picture

A very valuable seminal contribution to quantum mechan-
ics was given by de Broglie around 1926 with the concept
of “quantum potential”, just after proposing his theory of
pilot waves [1]. However, an organic presentation of this
idea came only several years later [2]. At the beginning of
the Fifties, Bohm also considered the concept of quantum
potential [3]. Actually, the concept was already naturally
appearing in a hydrodynamical description proposed in
1926 by Madelung [4] (first proposal of a hydrodynamical
model of quantum mechanics), followed by the proposal of
Korn in 1927 [5]. The Madelung fluid description of quan-
tum mechanics turned out to be very fruitful in a number
of applications: from the pilot waves theory to the hidden
variables theory, from stochastic mechanics to quantum
cosmology (for a historical review, see Ref. [6]).

In recent past years, it has also been applied to dis-
ciplines where the quantum formalism is a useful tool for
describing the evolution of classical systems (quantum-like
systems) or to solve classical nonlinear partial differential
equations [7].
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In the Madelung fluid description, the wave func-
tion, say Ψ , being a complex quantity, is represented in
terms of modulus and phase which, when substituted
in the Schrödinger equation, makes it possible to ob-
tain a pair of nonlinear fluid equations for the “density”
ρ = |Ψ |2 and the “current velocity” V = ∇Arg(Ψ): one
is the continuity equation (taking into account probabil-
ity conservation) and the other one is a Navier-Stokes-
like equation of motion, which contains a force term pro-
portional to the gradient of the quantum potential, i.e.,
∝ (∇2|Ψ |)/|Ψ | = (∇2ρ1/2)/ρ1/2. The nonlinear charac-
ter of this system of fluid equations naturally allows an
extension of the Madelung description to systems whose
dynamics is governed by one ore more NLSEs. Remark-
ably, during the last four decades, this quantum methodol-
ogy has been incorporate into practically all the nonlinear
sciences, especially in nonlinear optics [8–10] and plasma
physics [11,12] and it has proved to be very powerful in
solving a number of problems. Let us consider, the follow-
ing (1+1)D nonlinear Schrödinger-like equation (NLSE):

iα
∂Ψ

∂s
= − α2

2
∂2Ψ

∂x2
+ U

[|Ψ |2]Ψ, (1)
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where U
[|Ψ |2] is, in general, a functional of |Ψ |2, the con-

stant α accounts for the dispersive effects, and s and x are
the timelike and the configurational coordinates, respec-
tively. Let us assume

Ψ =
√

ρ(x, s) exp
[

i

α
Θ(x, s)

]
, (2)

then substitute equations (2) in (1). After separating
the real from the imaginary parts, we get the following
Madelung fluid representation of (1) in terms of a pair of
coupled fluid equations:

∂ρ

∂s
+

∂

∂x
(ρV ) = 0 , (3)

(continuity)
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∂x2

]
, (4)

(motion) where the current velocity V is given by

V (x, s) =
∂Θ(x, s)

∂x
. (5)

The Madelung fluid equations (3) and (4) can, under cer-
tain special circumstances, be solved analytically, as it has
been done in a recent investigation of the non-stationary
reshaping of elongated Bose-Einstein condensate clouds in
the Thomas-Fermi limit [13]; or in constructing a mapping
between soliton-like solutions of wide families of NLSEs
and Korteweg-de Vries equations [14].

In order to give the Madelung fluid description of a
charged-particle beam, in the next section, we present the
NLSE describing the longitudinal dynamics of a coasting
beam in the presence of nonlinear collective and nonlocal
effects in high-energy accelerating machines in the frame-
work of the Thermal Wave Model (TWM).

2 The NLSE in the framework of TWM

Within the TWM framework, the longitudinal dynamics
of particle bunches is described in terms of a complex wave
function Ψ(x, s), where s is the distance of propagation
and x is the longitudinal extension of the particle beam,
measured in the moving frame of reference. The particle
density, λ(x, s), is related to the wave function according
to λ(x, s) = |Ψ(x, s)|2 [15]. The collective longitudinal evo-
lution of the beam in a circular high-energy accelerating
machine is governed by the Schrödinger-like equation

iε
∂Ψ

∂s
+

ε2η

2
∂2Ψ

∂x2
− U(x, s)Ψ = 0 , (6)

where ε is the longitudinal beam emittance and η is the
slip factor [16], defined as η = γ−2

T − γ−2 (γT is the tran-
sition energy, defined as the inverse of the momentum
compaction [16], and γ is the relativistic factor). Further-
more, U(x, s) is the effective dimensionless (with respect

to the nominal particle energy, E0 = mγc2) potential en-
ergy due to the interaction between the bunch and the
surroundings. Note that η can be positive (above transi-
tion energy) or negative (below transition energy). Above
the transition energy, in analogy with quantum mechan-
ics, 1/η plays the role of an effective mass associated with
the beam as a whole. Below transition energy, 1/η plays
the role of a “negative mass”.

Equation (6) has to be coupled with an equation for U .
If no external sources of electromagnetic fields are present
and the effects of charged-particle radiation damping is
negligible, the self-interaction between the beam and the
surroundings, due to the image charges and the image
currents on the walls of the vacuum chamber, makes U a
functional of the beam density. It can be proven that, in
a torus-shaped accelerating machine, characterized by a
toroidal radius R0 and a poloidal radius a, for a coasting
beam of radius b � a travelling at velocity βc (β ≤ 1 and
c being the speed of light), the self-interaction potential
energy is given by [17] (a more general expression is given
in Ref. [18]):

U [λ1(x, s)] =
q2βc

E0

(
R0Z

′
Iλ1(x, s) + Z ′

R

∫ x

0

λ1(x′, s) dx′
)

,

(7)
where λ1(x, s) is the line beam density perturbation, q
is the charge of the particles, ε0 is the vacuum dielectric
constant, and Z ′

R and Z ′
I are the resistive and the total

reactive parts, respectively, of the longitudinal coupling
impedance per unit length of the machine. Thus, the cou-
pling impedance per unit length can be defined as the
complex quantity Z

′
= Z

′
R + iZ

′
I . In our simple model of

a circular machine, it is easy to see that [16,18]:

Z ′
I =

1
2πR0

(
g0Z0

2βγ2
− ω0L

)
≡ ZI

2πR0
, (8)

where Z0 is the vacuum impedance, ω0 = βc/R0 is the
nominal orbital angular frequency of the particles and L
is the total inductance. This way, ZI represents the total
reactance as the difference between the total space charge
capacitive reactance, g0Z0/(2βγ2), and the total inductive
reactance, ω0L. Consequently, in the limit of negligible
resistance, equation (7) reduces to

U [λ1] =
q2βc

2πE0

(
g0Z0

2βγ2
− ω0L

)
λ1. (9)

Denoting by ρ(x, s) the line density and by ρ0(x) = ρ(x, 0)
the unperturbed one, in the TWM framework we have
the following identifications: ρ(x, s) = |Ψ(x, s)|2, ρ0(x) =
|Ψ(x, 0)|2 ≡ |Ψ0(x)|2, where Ψ0 is a complex function and,
consequently, λ1(x, s) = |Ψ(x, s)|2 − |Ψ0|2. In an unper-
turbed coasting beam, the particles are uniformly dis-
tributed along the longitudinal coordinate x. This implies
that for a coasting beam ρ0 is independent of x, whilst Ψ0

is still function of x provided that its squared modulus is
uniform too (and coinciding with ρ0). Thus, the combina-
tion of equations (6) and (7) gives the following evolution
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equation for the beam

i
∂Ψ

∂s
+

α

2
∂2Ψ

∂x2
+ X [|Ψ |2 − |Ψ0|2

]
Ψ

+ R Ψ

∫ x

0

[|Ψ(x′, s)|2 − |Ψ0|2
]

dx′ = 0 , (10)

where

α = εη = ε
(
γ−2 − γ−2

T

)
, (11)

X =
q2βcR0

εE0
Z ′

I , (12)

R =
q2βc

εE0
Z ′

R. (13)

Equation (10) belongs to the family of NLSEs governing
the propagation and dynamics of wave packets in the pres-
ence of nonlocal effects. The modulational instability of
such an integro-differential equation has been investigated
for the first time in literature in reference [19]. Some non-
local effects associated with the collective particle beam
dynamics have recently been described with this equa-
tion [17]. Note that equation (10) can be cast in the form
of equation (1), provided the following expression for the
nonlinear potential is assumed, i.e.,

U [|Ψ |2] = − α

{
X [|Ψ |2 − |Ψ0|2

]

+ R
∫ x

0

[|Ψ(x′, s)|2 − |Ψ0|2
]

dx′
}

. (14)

3 Coherent instability analysis and its
identification with the modulational
instability analysis

3.1 Deterministic approach to MI (monochromatic
coasting beam)

Under the conditions assumed above, let us consider a
monochromatic coasting beam travelling in a circular
high-energy machine with the unperturbed velocity V0 and
the unperturbed density ρ0 = |Ψ0|2 (equilibrium state).
In these conditions, all the particles of the beam have the
same velocity and their collective interaction with the sur-
roundings is absent. In the Madelung fluid representation,
the beam can be thought of as a fluid with both current
velocity and density (i.e., ρ0) uniform and constant. In
this state, the Madelung fluid equations (3) and (4) van-
ish identically. Let us now introduce small perturbations
in V (x, s) and ρ(x, s), i.e.,

V = V0 + V1 , |V1| � |V0| , (15)
ρ = ρ0 + ρ1 , |ρ1| � ρ0 . (16)

By introducing (15) and (16) in the pair of equations (3)
and (4), and linearizing, we get the following system of

equations:

∂ρ1

∂s
+ V0

∂ρ1

∂x
+ ρ0

∂V1

∂x
= 0 , (17)

∂V1

∂s
+ V0

∂V1

∂x
= αRρ1 + αX ∂ρ1

∂x
+

α2

4ρ0

∂3ρ1

∂x3
. (18)

In order to find the linear dispersion relation, we take
the Fourier transform of the system of equations (17) and
(18), i.e. we express the quantities ρ1(x, s) and V1(x, s)
in terms of their Fourier transforms ρ̃1(k, ω) and Ṽ1(k, ω),
respectively,

ρ1(x, s) =
∫

dk dω ρ̃1(k, ω)eikx−iωs , (19)

V1(x, s) =
∫

dk dω Ṽ1(k, ω)eikx−iωs , (20)

and, after substituting in (17) and (18), we get the follow-
ing system of algebraic equations:

−ρ0kṼ1 = (kV0 − ω) ρ̃1 , (21)

i (kV0 − ω) Ṽ1 =
(

αR + iαkX − i
α2

4ρ0
k3

)
ρ̃1 . (22)

By combining (21) and (22) we finally get the dispersion
relation

(ω

k
− V0

)2

= iαρ0

(Z
k

)
+

α2k2

4
, (23)

where we have introduced the complex quantity Z = R+
ikX ≡ ZR+iZI , proportional to the longitudinal coupling
impedance per unity length of the beam. In general, in
equation (23), ω is a complex quantity, i.e., ω ≡ ωR +
iωI . If ωI �= 0, the modulational instability takes place in
the system. Thus, by substituting the complex form of ω
in equation (23), separating the real from the imaginary
parts and using (11), we finally get:

ZI = −η
εkρ0

4ω2
I

Z2
R +

1
η

ω2
I

εkρ0
+ η

εk3

4ρ0
. (24)

This equation fixes, for any values of the wavenumber k
and any values of the growth rate ωI a relationship be-
tween real and imaginary parts of the longitudinal cou-
pling impedance. For each ωI �= 0, running the values of
the slip factor η, it describes two families of parabolas
in the complex plane (ZR − ZI). Each pair (ZR,ZI) in
this plane represents a working point of the accelerating
machine. Consequently, each parabola is the locus of the
working points associated with a fixed growth rate of the
MI. According to Figure 1, below the transition energy
(γ < γT ), η is positive and therefore the instability parabo-
las have a negative concavity, whilst above the transition
energy (γ > γT ), since η is negative the instability parabo-
las have a positive concavity (negative mass instability). It
is clear from equation (24) that, approaching ωI = 0 from
positive (negative) values, the two families of parabolas
reduce asymptotically to a straight line upper (lower) un-
limited located on the imaginary axis. The straight line
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Fig. 1. Qualitative plots of the modulational instability curves in the plane (ZR −ZI) of a coasting beam below the transition
energy, (η > 0) and above the transition energy, (η < 0), respectively. The bold face vertical straight lines represent the stability
region (ωI = 0).

represent the only possible region below (above) the tran-
sition) energy where the system is modulationally stable
against small perturbations in both density and velocity
of the beam, with respect to their unperturbed values ρ0

and V0, respectively (note that density and velocity are di-
rectly connected with amplitude and phase, respectively,
of the wave function Ψ). Any other point of the complex
plane belongs to a instability parabola (ωI �= 0).

In the limit of small dispersion, i.e., εk � 1, the sec-
ond term of the right hand side of equation (23) can be
neglected and equation (24) reduces to

ZI ≈ −η
εkρ0

4ω2
I

Z2
R +

1
η

ω2
I

εkρ0
. (25)

Furthermore, for purely reactive impedances (ZR ≡ 0),
equation (10) reduces to the cubic NLSE and the corre-
sponding dispersion relation gives (note that in this case
ωR = V0k)

ω2
I

k2
= −εηρ0

(ZI

k

)
+

α2k2

4
, (26)

from which it is easily seen that the system is modulation-
ally unstable (ω2

I > 0) under the following conditions

ηZI > 0 (27)

ρo >
εηk2

4XI
. (28)

Condition (27) is a well known coherent instability condi-
tion for purely reactive impedances which coincides with
the “Lighthill criterion” [20] associated with the cubic
NLSE. This aspect was pointed out for the first time in
references [21,22].

Table 1. Coherent instability scheme of a monochromatic
coasting beam in the case of a purely reactive impedance
(ZR = 0). The instability corresponding to η < 0 is usually
referred to as “negative mass instability”.

ZI > 0 ZI < 0

(capacitive) (inductive)

η > 0 stable unstable

(below transition energy)

η < 0 unstable stable

(above transition energy)

According to Table 1, the instability condition im-
plies that the system is modulationally unstable below
(above) the transition energy and for capacitive (induc-
tive) impedances and stable in other possible circum-
stances. Condition (28) implies that the instability thresh-
old is given by the nonzero minimum intensity ρ0m =
εηk2/4XI .

3.2 MI analysis of a white coasting beam

The dispersion relation (23) makes it possible to write
an expression for the admittance of the coasting beam
Y ≡ 1/Z:

kY =
iαρ0

(ω/k − V0)
2 − α2k2/4

. (29)
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Let us now consider a non-monochromatic coasting beam.
Such a system may be thought of as an ensemble of in-
coherent coasting beams with different unperturbed ve-
locities (white beam). Let us call f0(V ) the distribution
function of the velocity at the equilibrium. The subsystem
corresponding to a coasting beam comprising the particles
having velocities between V and V + dV has an elemen-
tary admittance dY. By replacing in equation (29) ρ0 with
f0(V )dV , the expression for the elementary admittance is
easily found as:

kdY =
iα f0(V ) dV

(V − ω/k)2 − α2k2/4
. (30)

All the elementary coasting beams in which we have di-
vided the system suffer the same electric voltage per unity
length along the longitudinal direction. This means that
the total admittance of the system is the sum of the all ele-
mentary admittances, in analogy with a system of electric
wires all connected in parallel. Therefore,

kY = iα

∫
f0(V ) dV

(V − ω/k)2 − α2k2/4
. (31)

This dispersion relation can be also cast in the following
form:

1 = iα

(Z
k

) ∫
f0(V ) dV

(V − ω/k)2 − α2k2/4
, (32)

where we have introduced the total impedance of the sys-
tem which is the inverse of the total admittance, i.e.,
Z = 1/Y.

An interesting equivalent form of equation (32) can be
obtained. To this end, we first observe that the following
identity holds:

1
(V − ω/k)2 − α2k2/4

=
1

αk

[
1

(V − αk/2) − ω/k

− 1
(V + αk/2) − ω/k

]
.

Then, using this identity in equation (32) it can easily be
shown that:

1 = i

(Z
k

)
1
k

[∫
f0(V ) dV

(V − αk/2) − ω/k

−
∫

f0(V ) dV

(V + αk/2) − ω/k

]
, (33)

which can be cast in the form:

1 = iα

(Z
k

) ∫
f0(p + αk/2) − f0(p − αk/2)

αk

dp

p − ω/k
.

(34)
We note that, assuming f0(V ) to be proportional to
δ(V − V0), from equation (34) we easily recover the dis-
persion relation for the case of a monochromatic coasting
beam (see Eq. (23)). In general, equation (34) takes into

account the equilibrium velocity (or energy) spread of the
beam particles, but it has not been obtained with a ki-
netic treatment. We have only assumed the existence of an
equilibrium state corresponding to an equilibrium veloc-
ity distribution, without taking into account any phase-
space evolution in terms of a kinetic distribution func-
tion. Our result has basically been obtained within the
framework of the Madelung fluid description, extending
the standard MI analysis for monochromatic waves to
non-monochromatic wave packets (statistical ensemble of
monochromatic coasting beams).

Nevertheless, equation (34) can also be obtained
within the kinetic description provided by the Moyal-Ville-
Wigner description [23–25], as was been done for the first
time in the context of the TWM [26], but later extended
to nonlinear optics [27–30], plasma physics [31,32], sur-
face gravity waves [33], lattice vibration physics (molecu-
lar crystals) [34,35].

From the above investigations, and according to the
former quantum kinetic approaches to nonlinear systems
[36,37], we can summarize the following general conclu-
sions.

• There are two distinct ways to describe MI. The first,
and the most used one, is a “deterministic” approach,
whilst the second one is a “statistical approach”.

• In the statistical approach, the basic idea is to tran-
sit from the configuration space description, where the
NLSE governs the particular wave-envelope propaga-
tion, to the phase space description, where an appro-
priate kinetic equation is able to model a random ver-
sion of the MI. This has been accomplished by using
the mathematical tool provided by the ”quasidistribu-
tion” (Fourier transform of the density matrix) that
is widely used for quantum systems. In fact, for any
nonlinear system, whose dynamics is governed by the
NLSE, one can introduce a two-points correlation func-
tion which plays a role similar to the one played by
the density matrix of a quantum system [38–40]. Con-
sequently, the governing kinetic equation is nothing
but a sort of nonlinear von Neumann-Weyl equation.
In the statistical approach to modulational instability,
a linear stability analysis of the von Neumann-Weyl
equation leads to a phenomenon fully similar to the
well known Landau damping, predicted by Landau in
1946 for plasma waves [41]

• The deterministic MI can be recovered for the case of
a monochromatic wave; in particular, it coincides with
the coherent instability of a coasting beam in the limit
of weak dispersion.

• A Landau-type damping for a non-monochromatic
wavepacket is predicted and the weak Landau damp-
ing is recovered for weak dispersion, in particular for
plasma waves and particle beams in the usual kinetic
Vlasov-Maxwell framework.

• The interplay between Landau damping and MI char-
acterizes the statistical behavior of the nonlinear
collective wave packet propagation governed by the
NLSE.
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All the above conclusions have been obtained within the
kinetic description from a dispersion relation fully simi-
lar to equation (34). Consequently, it is absolutely evi-
dent that all the above conclusions can be obtained within
the framework of the Madelung description of a white in-
tense charged-particle coasting beam. This proves that the
Madelung fluid description of the MI of an ensemble of
incoherent beams (white beam) is equivalent to the one
provided by the Moyal-Ville-Wigner kinetic theory.

4 Conclusions and remarks

In this paper, we have developed a hydrodynamical de-
scription of the coherent instability of an intense white
coasting charged-particle beam in a high-energy acceler-
ator in the presence of nonlinear collective and nonlocal
effects. The analysis has been based on the Madelung fluid
model within the framework of the TWM. It has been
shown that this quantum hydrodynamical description of
MI, with both deterministic and statistical character, is
fully equivalent to the one provided by the quantum ki-
netic theory. Remarkably, the proposed hydrodynamical
description is certainly very convenient in particle accel-
erators because it is very close to the standard classical
picture of particle beams (in particular white beams) in
particle accelerators.
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